On drop property for convex sets
نویسندگان
چکیده
Let (X, ‖ · ‖) be a real Banach space. Let C be a closed convex set in X. By a drop D(x, C) determined by a point x ∈ X, x / ∈ C, we shall mean the convex hull of the set {x} ∪ C. We say that C has the drop property if C 6= X and if for every nonvoid closed set A disjoint with C, there exists a point a ∈ A such that D(a, C) ∩ A = {a}. For a given C a sequence {xn} in X will be called a stream if xn+1 ∈ D(xn, C) \ C (cf. [6]). When the set A has a positive distance from C, a variety of “Drop theorems” has been obtained in [1, 2, 3] and [8]. If C is the closed unit ball and has the drop property then we say that the norm ‖ · ‖ has the drop property [9]. Norms with the drop property have been investigated in papers [4, 6] and [9]. The drop property for closed bounded sets has been considered in [5]. There was proved that a bounded closed convex symmetric set having the drop property is compact or has a nonempty interior. We shall prove this theorem without assumptions on boundness and symmetry of sets under consideration. The Kuratowski measure of noncompactness of a set G in a Banach space X is the infimum α(G) of those ε > 0 for which there is a covering of G by a finite number of sets of diameter less than ε. For a closed convex set C denote by F (C) the set of all linear continuous functionals f ∈ X, f 6= 0, which are bounded above on C. For f ∈ F (C) and δ > 0 put
منابع مشابه
A convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملSome results on functionally convex sets in real Banach spaces
We use of two notions functionally convex (briefly, F--convex) and functionally closed (briefly, F--closed) in functional analysis and obtain more results. We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$, then $bigcup_{alphain I}A_{alpha}$ is F--convex. Moreover, we introduce new definition o...
متن کاملPROPERTY ANALYSIS OF TRIPLE IMPLICATION METHOD FOR APPROXIMATE REASONING ON ATANASSOVS INTUITIONISTIC FUZZY SETS
Firstly, two kinds of natural distances between intuitionistic fuzzy sets are generated by the classical natural distance between fuzzy sets under a unified framework of residual intuitionistic implication operators. Secondly, the continuity and approximation property of a method for solving intuitionistic fuzzy reasoning are defined. It is proved that the triple implication method for intuitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007